"""
Tests for bitarray.util module
"""
from __future__ import absolute_import

import os
import array
import base64
import binascii
import operator
import shutil
import tempfile
import unittest
from io import StringIO
from functools import reduce
from string import hexdigits
from random import choice, getrandbits, randrange, randint, random
from collections import Counter

from bitarray import (bitarray, frozenbitarray, decodetree, bits2bytes,
                      _set_default_endian)
from bitarray.test_bitarray import (Util, skipIf, is_pypy, urandom_2,
                                    SYSINFO, DEBUG, WHITESPACE)

from bitarray.util import (
    zeros, ones, urandom, pprint, strip, count_n,
    parity, xor_indices,
    count_and, count_or, count_xor, any_and, subset,
    correspond_all, byteswap, intervals,
    serialize, deserialize, ba2hex, hex2ba, ba2base, base2ba,
    ba2int, int2ba,
    sc_encode, sc_decode, vl_encode, vl_decode,
    _huffman_tree, huffman_code, canonical_huffman, canonical_decode,
)

if DEBUG:
    from bitarray._util import _sc_rts, _SEGSIZE  # type: ignore
    SEGBITS = 8 * _SEGSIZE
else:
    SEGBITS = None

# ---------------------------------------------------------------------------

class ZerosOnesTests(unittest.TestCase):

    def test_range(self):
        for n in range(100):
            a = zeros(n)
            self.assertEqual(len(a), n)
            self.assertFalse(a.any())
            self.assertEqual(a.count(0), n)
            self.assertEqual(a.count(1), 0)
            self.assertIsInstance(a, bitarray)
            b = ones(n)
            self.assertEqual(len(b), n)
            self.assertTrue(b.all())
            self.assertEqual(b.count(0), 0)
            self.assertEqual(b.count(1), n)
            self.assertIsInstance(b, bitarray)

    def test_endian(self):
        for default_endian in 'big', 'little':
            _set_default_endian(default_endian)

            for a in (zeros(0), zeros(0, None), zeros(0, endian=None),
                      ones(0), ones(0, None), ones(0, endian=None)):
                self.assertEqual(a, bitarray())
                self.assertEqual(a.endian, default_endian)

            for endian in 'big', 'little':
                for a in zeros(3, endian), zeros(3, endian=endian):
                    self.assertEqual(a, bitarray('000'))
                    self.assertEqual(a.endian, endian)
                for b in ones(3, endian), ones(3, endian=endian):
                    self.assertEqual(b, bitarray('111'))
                    self.assertEqual(b.endian, endian)

    def test_wrong_args(self):
        for f in zeros, ones:
            self.assertRaises(TypeError, f) # no argument
            self.assertRaises(TypeError, f, '')
            self.assertRaises(TypeError, f, bitarray())
            self.assertRaises(TypeError, f, [])
            self.assertRaises(TypeError, f, 1.0)
            self.assertRaises(ValueError, f, -1)

            # endian not string
            for x in 0, 1, {}, [], False, True:
                self.assertRaises(TypeError, f, 0, x)
            # endian wrong string
            self.assertRaises(ValueError, f, 0, 'foo')

# ---------------------------------------------------------------------------

class URandomTests(unittest.TestCase):

    def test_basic(self):
        for default_endian in 'big', 'little':
            _set_default_endian(default_endian)

            for a in urandom(0), urandom(0, None), urandom(0, endian=None):
                self.assertEqual(a, bitarray())
                self.assertEqual(a.endian, default_endian)

            for n in range(50):
                a = urandom(n)
                self.assertEqual(len(a), n)
                self.assertEqual(a.endian, default_endian)

            for endian in 'big', 'little':
                for a in urandom(11, endian), urandom(11, endian=endian):
                    self.assertEqual(len(a), 11)
                    self.assertEqual(a.endian, endian)

    def test_count(self):
        a = urandom(1000)
        b = urandom(1000)
        self.assertNotEqual(a, b)
        self.assertTrue(400 < a.count() < 600)
        self.assertTrue(400 < b.count() < 600)

    def test_wrong_args(self):
        self.assertRaises(TypeError, urandom)
        self.assertRaises(TypeError, urandom, '')
        self.assertRaises(TypeError, urandom, bitarray())
        self.assertRaises(TypeError, urandom, [])
        self.assertRaises(TypeError, urandom, 1.0)
        self.assertRaises(ValueError, urandom, -1)

        self.assertRaises(TypeError, urandom, 0, 1)
        self.assertRaises(ValueError, urandom, 0, 'foo')

# ---------------------------------------------------------------------------

class PPrintTests(unittest.TestCase):

    @staticmethod
    def get_code_string(a):
        f = StringIO()
        pprint(a, stream=f)
        return f.getvalue()

    def round_trip(self, a):
        b = eval(self.get_code_string(a))
        self.assertEqual(b, a)
        self.assertEqual(type(b), type(a))

    def test_bitarray(self):
        a = bitarray('110')
        self.assertEqual(self.get_code_string(a), "bitarray('110')\n")
        self.round_trip(a)

    def test_frozenbitarray(self):
        a = frozenbitarray('01')
        self.assertEqual(self.get_code_string(a), "frozenbitarray('01')\n")
        self.round_trip(a)

    def test_formatting(self):
        a = bitarray(200)
        for width in range(40, 130, 10):
            for n in range(1, 10):
                f = StringIO()
                pprint(a, stream=f, group=n, width=width)
                r = f.getvalue()
                self.assertEqual(eval(r), a)
                s = r.strip("bitary(')\n")
                for group in s.split()[:-1]:
                    self.assertEqual(len(group), n)
                for line in s.split('\n'):
                    self.assertTrue(len(line) < width)

    def test_fallback(self):
        for a in None, 'asd', [1, 2], bitarray(), frozenbitarray('1'):
            self.round_trip(a)

    def test_subclass(self):
        class Foo(bitarray):
            pass

        a = Foo()
        code = self.get_code_string(a)
        self.assertEqual(code, "Foo()\n")
        b = eval(code)
        self.assertEqual(b, a)
        self.assertEqual(type(b), type(a))

    def test_random(self):
        for n in range(150):
            self.round_trip(urandom(n))

    def test_file(self):
        tmpdir = tempfile.mkdtemp()
        tmpfile = os.path.join(tmpdir, 'testfile')
        a = bitarray(1000)
        try:
            with open(tmpfile, 'w') as fo:
                pprint(a, fo)
            with open(tmpfile, 'r') as fi:
                b = eval(fi.read())
            self.assertEqual(a, b)
        finally:
            shutil.rmtree(tmpdir)

# ---------------------------------------------------------------------------

class StripTests(unittest.TestCase, Util):

    def test_simple(self):
        self.assertRaises(TypeError, strip, '0110')
        self.assertRaises(TypeError, strip, bitarray(), 123)
        self.assertRaises(ValueError, strip, bitarray(), 'up')
        for default_endian in 'big', 'little':
            _set_default_endian(default_endian)
            a = bitarray('00010110000')
            self.assertEQUAL(strip(a), bitarray('0001011'))
            self.assertEQUAL(strip(a, 'left'), bitarray('10110000'))
            self.assertEQUAL(strip(a, 'both'), bitarray('1011'))
            b = frozenbitarray('00010110000')
            c = strip(b, 'both')
            self.assertEqual(c, bitarray('1011'))
            self.assertIsType(c, 'frozenbitarray')

    def test_zeros_ones(self):
        for n in range(10):
            for mode in 'left', 'right', 'both':
                a = zeros(n)
                c = strip(a, mode)
                self.assertIsType(c, 'bitarray')
                self.assertEqual(c, bitarray())
                self.assertEqual(a, zeros(n))

                b = frozenbitarray(a)
                c = strip(b, mode)
                self.assertIsType(c, 'frozenbitarray')
                self.assertEqual(c, bitarray())

                a.setall(1)
                c = strip(a, mode)
                self.assertEqual(c, ones(n))

    def test_random(self):
        for a in self.randombitarrays():
            b = a.copy()
            f = frozenbitarray(a)
            s = a.to01()
            for mode, res in [
                    ('left',  bitarray(s.lstrip('0'), a.endian)),
                    ('right', bitarray(s.rstrip('0'), a.endian)),
                    ('both',  bitarray(s.strip('0'),  a.endian)),
            ]:
                c = strip(a, mode)
                self.assertEQUAL(c, res)
                self.assertIsType(c, 'bitarray')
                self.assertEQUAL(a, b)

                c = strip(f, mode)
                self.assertEQUAL(c, res)
                self.assertIsType(c, 'frozenbitarray')
                self.assertEQUAL(f, b)

    def test_one_set(self):
        for _ in range(10):
            n = randint(1, 10000)
            a = bitarray(n)
            a.setall(0)
            a[randrange(n)] = 1
            self.assertEqual(strip(a, 'both'), bitarray('1'))
            self.assertEqual(len(a), n)

# ---------------------------------------------------------------------------

class CountN_Tests(unittest.TestCase, Util):

    @staticmethod
    def count_n(a, n):
        "return lowest index i for which a[:i].count() == n"
        i, j = n, a.count(1, 0, n)
        while j < n:
            j += a[i]
            i += 1
        return i

    def check_result(self, a, n, i, v=1):
        self.assertEqual(a.count(v, 0, i), n)
        if i == 0:
            self.assertEqual(n, 0)
        else:
            self.assertEqual(a[i - 1], v)

    def test_empty(self):
        a = bitarray()
        self.assertEqual(count_n(a, 0), 0)
        self.assertEqual(count_n(a, 0, 0), 0)
        self.assertEqual(count_n(a, 0, 1), 0)
        self.assertRaises(ValueError, count_n, a, 1)
        self.assertRaises(TypeError, count_n, '', 0)
        self.assertRaises(TypeError, count_n, a, 7.0)
        self.assertRaises(ValueError, count_n, a, 0, 2)
        self.assertRaisesMessage(ValueError, "n = 1 larger than bitarray "
                                 "size (len(a) = 0)", count_n, a, 1)

    def test_simple(self):
        a = bitarray('111110111110111110111110011110111110111110111000')
        b = a.copy()
        self.assertEqual(len(a), 48)
        self.assertEqual(a.count(), 37)
        self.assertEqual(a.count(0), 11)

        self.assertEqual(count_n(a, 0, 0), 0)
        self.assertEqual(count_n(a, 2, 0), 12)
        self.assertEqual(count_n(a, 10, 0), 47)
        # n < 0
        self.assertRaisesMessage(ValueError, "non-negative integer expected",
                                 count_n, a, -1, 0)
        # n > len(a)
        self.assertRaisesMessage(ValueError, "n = 49 larger than bitarray "
                                 "size (len(a) = 48)", count_n, a, 49, 0)
        # n > a.count(0)
        self.assertRaisesMessage(ValueError, "n = 12 exceeds total count "
                                 "(a.count(0) = 11)",
                                 count_n, a, 12, 0)

        self.assertEqual(count_n(a, 0), 0)
        self.assertEqual(count_n(a, 20), 23)
        self.assertEqual(count_n(a, 20, 1), 23)
        self.assertEqual(count_n(a, 37), 45)
        # n < 0
        self.assertRaisesMessage(ValueError, "non-negative integer expected",
                                 count_n, a, -1)
        # n > len(a)
        self.assertRaisesMessage(ValueError, "n = 49 larger than bitarray "
                                 "size (len(a) = 48)", count_n, a, 49)
        # n > a.count(1)
        self.assertRaisesMessage(ValueError, "n = 38 exceeds total count "
                                 "(a.count(1) = 37)", count_n, a, 38)

        for v in 0, 1:
            for n in range(a.count(v) + 1):
                i = count_n(a, n, v)
                self.check_result(a, n, i, v)
                self.assertEqual(a[:i].count(v), n)
                self.assertEqual(i, self.count_n(a if v else ~a, n))
        self.assertEQUAL(a, b)

    def test_frozen(self):
        a = frozenbitarray('001111101111101111101111100111100')
        self.assertEqual(len(a), 33)
        self.assertEqual(a.count(), 24)
        self.assertEqual(count_n(a, 0), 0)
        self.assertEqual(count_n(a, 10), 13)
        self.assertEqual(count_n(a, 24), 31)
        self.assertRaises(ValueError, count_n, a, -1) # n < 0
        self.assertRaises(ValueError, count_n, a, 25) # n > a.count()
        self.assertRaises(ValueError, count_n, a, 34) # n > len(a)
        for n in range(25):
            self.check_result(a, n, count_n(a, n))

    def test_ones(self):
        n = randint(1, 100000)
        a = ones(n)
        self.assertEqual(count_n(a, n), n)
        self.assertRaises(ValueError, count_n, a, 1, 0)
        self.assertRaises(ValueError, count_n, a, n + 1)
        for _ in range(20):
            i = randint(0, n)
            self.assertEqual(count_n(a, i), i)

    def test_one_set(self):
        n = randint(1, 100000)
        a = zeros(n)
        self.assertEqual(count_n(a, 0), 0)
        self.assertRaises(ValueError, count_n, a, 1)
        for _ in range(20):
            a.setall(0)
            i = randrange(n)
            a[i] = 1
            self.assertEqual(count_n(a, 1), i + 1)
            self.assertRaises(ValueError, count_n, a, 2)

    def test_last(self):
        for N in range(1, 1000):
            a = zeros(N)
            a[-1] = 1
            self.assertEqual(a.count(), 1)
            self.assertEqual(count_n(a, 1), N)
            if N == 1:
                msg = "n = 2 larger than bitarray size (len(a) = 1)"
            else:
                msg = "n = 2 exceeds total count (a.count(1) = 1)"
            self.assertRaisesMessage(ValueError, msg, count_n, a, 2)

    def test_large(self):
        for _ in range(100):
            N = randint(100000, 250000)
            a = bitarray(N)
            v = getrandbits(1)
            a.setall(not v)
            for _ in range(randrange(100)):
                a[randrange(N)] = v
            tc = a.count(v)      # total count
            i = count_n(a, tc, v)
            self.check_result(a, tc, i, v)
            n = tc + 1
            self.assertRaisesMessage(ValueError, "n = %d exceeds total count "
                                     "(a.count(%d) = %d)" % (n, v, tc),
                                     count_n, a, n, v)
            for _ in range(20):
                n = randint(0, tc)
                i = count_n(a, n, v)
                self.check_result(a, n, i, v)

    def test_random(self):
        for a in self.randombitarrays():
            v = getrandbits(1)
            n = a.count(v) // 2
            i = count_n(a, n, v)
            self.check_result(a, n, i, v)
            # n = 0 -> count_n always 0
            self.assertEqual(count_n(a, 0, v), 0)

# ---------------------------------------------------------------------------

class BitwiseCountTests(unittest.TestCase, Util):

    def test_count_byte(self):
        for i in range(256):
            a = bitarray(bytearray([i]))
            cnt = a.count()
            self.assertEqual(count_and(a, zeros(8)), 0)
            self.assertEqual(count_and(a, ones(8)), cnt)
            self.assertEqual(count_and(a, a), cnt)
            self.assertEqual(count_or(a, zeros(8)), cnt)
            self.assertEqual(count_or(a, ones(8)), 8)
            self.assertEqual(count_or(a, a), cnt)
            self.assertEqual(count_xor(a, zeros(8)), cnt)
            self.assertEqual(count_xor(a, ones(8)), 8 - cnt)
            self.assertEqual(count_xor(a, a), 0)

    def test_1(self):
        a = bitarray('001111')
        aa = a.copy()
        b = bitarray('010011')
        bb = b.copy()
        self.assertEqual(count_and(a, b), 2)
        self.assertEqual(count_or(a, b), 5)
        self.assertEqual(count_xor(a, b), 3)
        for f in count_and, count_or, count_xor:
            # not two arguments
            self.assertRaises(TypeError, f)
            self.assertRaises(TypeError, f, a)
            self.assertRaises(TypeError, f, a, b, 3)
            # wrong argument types
            self.assertRaises(TypeError, f, a, '')
            self.assertRaises(TypeError, f, '1', b)
            self.assertRaises(TypeError, f, a, 4)
        self.assertEQUAL(a, aa)
        self.assertEQUAL(b, bb)

        b.append(1)
        for f in count_and, count_or, count_xor:
            self.assertRaises(ValueError, f, a, b)
            self.assertRaises(ValueError, f,
                              bitarray('110', 'big'),
                              bitarray('101', 'little'))

    def test_frozen(self):
        a = frozenbitarray('001111')
        b = frozenbitarray('010011')
        self.assertEqual(count_and(a, b), 2)
        self.assertEqual(count_or(a, b), 5)
        self.assertEqual(count_xor(a, b), 3)

    def test_random(self):
        for _ in range(100):
            n = randrange(1000)
            a = urandom_2(n)
            b = urandom(n, a.endian)
            self.assertEqual(count_and(a, b), (a & b).count())
            self.assertEqual(count_or(a, b),  (a | b).count())
            self.assertEqual(count_xor(a, b), (a ^ b).count())

    def test_misc(self):
        for a in self.randombitarrays():
            n = len(a)
            b = urandom(n, a.endian)
            # any and
            self.assertEqual(any(a & b), count_and(a, b) > 0)
            self.assertEqual(any_and(a, b), any(a & b))
            # any or
            self.assertEqual(any(a | b), count_or(a, b) > 0)
            self.assertEqual(any(a | b), any(a) or any(b))
            # any xor
            self.assertEqual(any(a ^ b), count_xor(a, b) > 0)
            self.assertEqual(any(a ^ b), a != b)

            # all and
            self.assertEqual(all(a & b), count_and(a, b) == n)
            self.assertEqual(all(a & b), all(a) and all(b))
            # all or
            self.assertEqual(all(a | b), count_or(a, b) == n)
            # all xor
            self.assertEqual(all(a ^ b), count_xor(a, b) == n)
            self.assertEqual(all(a ^ b), a == ~b)

# ---------------------------------------------------------------------------

class BitwiseAnyTests(unittest.TestCase, Util):

    def test_basic(self):
        a = frozenbitarray('0101')
        b = bitarray('0111')
        self.assertTrue(any_and(a, b))
        self.assertRaises(TypeError, any_and)
        self.assertRaises(TypeError, any_and, a, 4)
        b.append(1)
        self.assertRaises(ValueError, any_and, a, b)
        self.assertRaises(ValueError, any_and,
                          bitarray('01', 'little'),
                          bitarray('11', 'big'))

    def test_overlap(self):
        n = 100
        for _ in range(500):
            i1 = randint(0, n)
            j1 = randint(i1, n)
            r1 = range(i1, j1)

            i2 = randint(0, n)
            j2 = randint(i2, n)
            r2 = range(i2, j2)

            # test if ranges r1 and r2 overlap
            res1 = bool(r1) and bool(r2) and (i2 in r1 or i1 in r2)
            res2 = bool(set(r1) & set(r2))
            self.assertEqual(res1, res2)

            a1, a2 = bitarray(n), bitarray(n)
            a1[i1:j1] = a2[i2:j2] = 1
            self.assertEqual(any_and(a1, a2), res1)

    def test_common(self):
        n = 100
        for _ in range(500):
            s1 = self.random_slice(n)
            s2 = self.random_slice(n)
            r1 = range(n)[s1]
            r2 = range(n)[s2]
            # test if ranges r1 and r2 have common items
            a1, a2 = bitarray(n), bitarray(n)
            a1[s1] = a2[s2] = 1
            self.assertEqual(any_and(a1, a2), bool(set(r1) & set(r2)))

    def check(self, a, b):
        r = any_and(a, b)
        self.assertIsInstance(r, bool)
        self.assertEqual(r, any_and(b, a))  # symmetry
        self.assertEqual(r, any(a & b))
        self.assertEqual(r, (a & b).any())
        self.assertEqual(r, count_and(a, b) > 0)

    def test_explitcit(self):
        for a, b , res in [
                ('', '', False),
                ('0', '1', False),
                ('0', '0', False),
                ('1', '1', True),
                ('00011', '11100', False),
                ('00001011 1', '01000100 1', True)]:
            a = bitarray(a)
            b = bitarray(b)
            self.assertTrue(any_and(a, b) is res)
            self.check(a, b)

    def test_random(self):
        for a in self.randombitarrays():
            n = len(a)
            b = urandom(n, a.endian)
            self.check(a, b)

    def test_one(self):
        for n in range(1, 300):
            a = zeros(n)
            b = urandom(n)
            i = randrange(n)
            a[i] = 1
            self.assertEqual(b[i], any_and(a, b))

# ---------------------------------------------------------------------------

class SubsetTests(unittest.TestCase, Util):

    def test_basic(self):
        a = frozenbitarray('0101')
        b = bitarray('0111')
        self.assertTrue(subset(a, b))
        self.assertFalse(subset(b, a))
        self.assertRaises(TypeError, subset)
        self.assertRaises(TypeError, subset, a, '')
        self.assertRaises(TypeError, subset, '1', b)
        self.assertRaises(TypeError, subset, a, 4)
        b.append(1)
        self.assertRaises(ValueError, subset, a, b)
        self.assertRaises(ValueError, subset,
                          bitarray('01', 'little'),
                          bitarray('11', 'big'))

    def check(self, a, b, res):
        r = subset(a, b)
        self.assertIsInstance(r, bool)
        self.assertEqual(r, res)
        self.assertEqual(a | b == b, res)
        self.assertEqual(a & b == a, res)

    def test_True(self):
        for a, b in [('', ''), ('0', '1'), ('0', '0'), ('1', '1'),
                     ('000', '111'), ('0101', '0111'),
                     ('000010111', '010011111')]:
            self.check(bitarray(a), bitarray(b), True)

    def test_False(self):
        for a, b in [('1', '0'), ('1101', '0111'),
                     ('0000101111', '0100111011')]:
            self.check(bitarray(a), bitarray(b), False)

    def test_random(self):
        for a in self.randombitarrays(start=1):
            b = a.copy()
            # we set one random bit in b to 1, so a is always a subset of b
            b[randrange(len(a))] == 1
            self.check(a, b, True)
            # but b is only a subset when they are equal
            self.check(b, a, a == b)
            # we set all bits in a, which ensures that b is a subset of a
            a.setall(1)
            self.check(b, a, True)

# ---------------------------------------------------------------------------

class CorrespondAllTests(unittest.TestCase, Util):

    def test_basic(self):
        a = frozenbitarray('0101')
        b = bitarray('0111')
        self.assertTrue(correspond_all(a, b), (1, 1, 1, 1))
        self.assertRaises(TypeError, correspond_all)
        b.append(1)
        self.assertRaises(ValueError, correspond_all, a, b)
        self.assertRaises(ValueError, correspond_all,
                          bitarray('01', 'little'),
                          bitarray('11', 'big'))

    def test_explitcit(self):
        for a, b, res in [
                ('', '', (0, 0, 0, 0)),
                ('0000011111',
                 '0000100111', (4, 1, 2, 3)),
            ]:
            self.assertEqual(correspond_all(bitarray(a), bitarray(b)), res)

    def test_random(self):
        for a in self.randombitarrays():
            n = len(a)
            b = urandom(n, a.endian)
            res = correspond_all(a, b)
            self.assertEqual(res[0], count_and(~a, ~b))
            self.assertEqual(res[1], count_and(~a, b))
            self.assertEqual(res[2], count_and(a, ~b))
            self.assertEqual(res[3], count_and(a, b))

            self.assertEqual(res[0], n - count_or(a, b))
            self.assertEqual(res[1] + res[2], count_xor(a, b))
            self.assertEqual(sum(res), n)

# ---------------------------------------------------------------------------

@skipIf(is_pypy)
class ByteswapTests(unittest.TestCase, Util):

    def test_basic_bytearray(self):
        a = bytearray(b"ABCD")
        byteswap(a, 2)
        self.assertEqual(a, bytearray(b"BADC"))
        byteswap(a)
        self.assertEqual(a, bytearray(b"CDAB"))

        a = bytearray(b"ABCDEF")
        byteswap(a, 3)
        self.assertEqual(a, bytearray(b"CBAFED"))
        byteswap(a, 1)
        self.assertEqual(a, bytearray(b"CBAFED"))

    def test_basic_bitarray(self):
        a = bitarray("11110000 01010101")
        byteswap(a)
        self.assertEqual(a, bitarray("01010101 11110000"))

        a = bitarray("11110000 1111")
        byteswap(a)
        byteswap(a)
        self.assertEqual(a, bitarray("11110000 1111"))

    def test_basic_array(self):
        r = os.urandom(64)
        for typecode in array.typecodes:
            a = array.array(typecode, r)
            self.assertEqual(len(a) * a.itemsize, 64)
            a.byteswap()
            byteswap(a, a.itemsize)
            self.assertEqual(a.tobytes(), r)

    def test_empty(self):
        a = bytearray()
        byteswap(a)
        self.assertEqual(a, bytearray())
        for n in range(10):
            byteswap(a, n)
            self.assertEqual(a, bytearray())

    def test_one_byte(self):
        a = bytearray(b'\xab')
        byteswap(a)
        self.assertEqual(a, bytearray(b'\xab'))
        for n in range(2):
            byteswap(a, n)
            self.assertEqual(a, bytearray(b'\xab'))

    def test_errors(self):
        # buffer not writable
        for a in b"AB", frozenbitarray(16):
            self.assertRaises(BufferError, byteswap, a)

        a = bytearray(b"ABCD")
        b = bitarray(32)
        for n in -1, 3, 5, 6:
            # byte size not multiple of n
            self.assertRaises(ValueError, byteswap, a, n)
            self.assertRaises(ValueError, byteswap, b, n)

    def test_range(self):
        for n in range(20):
            for m in range(20):
                r = os.urandom(m * n)
                a = bytearray(r)
                byteswap(a, n)
                lst = []
                for i in range(m):
                    x = r[i * n:i * n + n]
                    lst.extend(x[::-1])
                self.assertEqual(a, bytearray(lst))

    def test_reverse_bytearray(self):
        for n in range(100):
            r = os.urandom(n)
            a = bytearray(r)
            byteswap(a)
            self.assertEqual(a, bytearray(r[::-1]))

    def test_reverse_bitarray(self):
        for n in range(100):
            a = urandom(8 * n)
            b = a.copy()
            byteswap(a)
            a.bytereverse()
            self.assertEqual(a, b[::-1])

# ---------------------------------------------------------------------------

class ParityTests(unittest.TestCase, Util):

    def test_explitcit(self):
        for s, res in [('', 0), ('1', 1), ('0010011', 1), ('10100110', 0)]:
            self.assertTrue(parity(bitarray(s)) is res)
            self.assertTrue(parity(frozenbitarray(s)) is res)

    def test_zeros_ones(self):
        for n in range(2000):
            self.assertEqual(parity(zeros(n)), 0)
            self.assertEqual(parity(ones(n)), n % 2)

    def test_random(self):
        a = bitarray()
        par = 0
        for _ in range(2000):
            self.assertEqual(parity(a), par)
            v = getrandbits(1)
            a.append(v)
            par ^= v

    def test_wrong_args(self):
        self.assertRaises(TypeError, parity, '')
        self.assertRaises(TypeError, parity, 1)
        self.assertRaises(TypeError, parity)
        self.assertRaises(TypeError, parity, bitarray("110"), 1)

    def test_random2(self):
        for a in self.randombitarrays():
            b = a.copy()
            self.assertEqual(parity(a), a.count() % 2)
            self.assertEqual(a, b)

# ---------------------------------------------------------------------------

class XoredIndicesTests(unittest.TestCase, Util):

    def test_explicit(self):
        for s, r in [("", 0), ("0", 0), ("1", 0), ("11", 1),
                     ("011", 3), ("001", 2), ("0001100", 7)]:
            a = bitarray(s)
            self.assertEqual(xor_indices(a), r)

    def test_wrong_args(self):
        self.assertRaises(TypeError, parity, '')
        self.assertRaises(TypeError, parity, 1)
        self.assertRaises(TypeError, parity)
        self.assertRaises(TypeError, parity, bitarray("110"), 1)

    def test_ones(self):
        # OEIS A003815
        lst = [0, 1, 3, 0, 4, 1, 7, 0, 8, 1, 11, 0, 12, 1, 15, 0, 16, 1, 19]
        self.assertEqual([xor_indices(ones(i)) for i in range(1, 20)], lst)
        a = bitarray()
        x = 0
        for i in range(1000):
            a.append(1)
            x ^= i
            self.assertEqual(xor_indices(a), x)
            if i < 19:
                self.assertEqual(lst[i], x)

    def test_random(self):
        for a in self.randombitarrays():
            indices = [i for i, v in enumerate(a) if v]
            if len(indices) == 0:
                c = 0
            elif len(indices) == 1:
                c = indices[0]
            else:
                c = reduce(operator.xor, indices)
            self.assertEqual(xor_indices(a), c)

    def test_flips(self):
        a = bitarray(128)
        c = 0
        for _ in range(1000):
            self.assertEqual(xor_indices(a), c)
            i = randrange(len(a))
            a.invert(i)
            c ^= i

    def test_error_correct(self):
        parity_bits = [1, 2, 4, 8, 16, 32, 64, 128]  # parity bit positions
        a = urandom(256)
        a[parity_bits] = 0
        c = xor_indices(a)
        # set parity bits such that block is well prepared
        a[parity_bits] = int2ba(c, length=8, endian="little")
        for i in range(0, 256):
            self.assertEqual(xor_indices(a), 0)  # ensure well prepared
            a.invert(i)
            self.assertEqual(xor_indices(a), i)  # index of the flipped bit!
            a.invert(i)

# ------------------   intervals of uninterrupted runs   --------------------

def runs(a):
    "return number of uninterrupted intervals of 1s and 0s"
    n = len(a)
    if n < 2:
        return n
    return 1 + count_xor(a[:-1], a[1:])

class IntervalsTests(unittest.TestCase, Util):

    def test_explicit(self):
        for s, lst in [
                ('', []),
                ('0', [(0, 0, 1)]),
                ('1', [(1, 0, 1)]),
                ('00111100 0000011',
                 [(0, 0, 2), (1, 2, 6), (0, 6, 13), (1, 13, 15)]),
            ]:
            a = bitarray(s)
            self.assertEqual(list(intervals(a)), lst)
            self.assertEqual(runs(a), len(lst))

    def test_uniform(self):
        for n in range(1, 100):
            for v in 0, 1:
                a = n * bitarray([v], self.random_endian())
                self.assertEqual(list(intervals(a)), [(v, 0, n)])
                self.assertEqual(runs(a), 1)

    def test_random(self):
        for a in self.randombitarrays():
            n = len(a)
            b = urandom(n)
            for value, start, stop in intervals(a):
                self.assertFalse(isinstance(value, bool))
                self.assertTrue(0 <= start < stop <= n)
                b[start:stop] = value
            self.assertEqual(a, b)

    def test_list_runs(self):
        for a in self.randombitarrays():
            # list of length of runs of alternating bits
            alt_runs = [stop - start for _, start, stop in intervals(a)]
            self.assertEqual(len(alt_runs), runs(a))

            b = bitarray()
            v = a[0] if a else None  # value of first run
            for length in alt_runs:
                self.assertTrue(length > 0)
                b.extend(length * bitarray([v]))
                v = not v
            self.assertEqual(a, b)

# ---------------------------------------------------------------------------

class HexlifyTests(unittest.TestCase, Util):

    def test_ba2hex(self):
        self.assertEqual(ba2hex(bitarray(0, 'big')), '')
        self.assertEqual(ba2hex(bitarray('1110', 'big')), 'e')
        self.assertEqual(ba2hex(bitarray('1110', 'little')), '7')
        self.assertEqual(ba2hex(bitarray('0000 0001', 'big')), '01')
        self.assertEqual(ba2hex(bitarray('1000 0000', 'big')), '80')
        self.assertEqual(ba2hex(bitarray('0000 0001', 'little')), '08')
        self.assertEqual(ba2hex(bitarray('1000 0000', 'little')), '10')
        self.assertEqual(ba2hex(frozenbitarray('1100 0111', 'big')), 'c7')
        # length not multiple of 4
        self.assertRaises(ValueError, ba2hex, bitarray('10'))
        self.assertRaises(TypeError, ba2hex, '101')

        c = ba2hex(bitarray('1101', 'big'))
        self.assertIsInstance(c, str)

    def test_ba2hex_group(self):
        a = bitarray('1000 0000 0101 1111', 'little')
        self.assertEqual(ba2hex(a), "10af")
        self.assertEqual(ba2hex(a, 0), "10af")
        self.assertEqual(ba2hex(a, 1, ""), "10af")
        self.assertEqual(ba2hex(a, 1), "1 0 a f")
        self.assertEqual(ba2hex(a, group=2), "10 af")
        self.assertEqual(ba2hex(a, 2, "-"), "10-af")
        self.assertEqual(ba2hex(a, group=3, sep="_"), "10a_f")
        self.assertEqual(ba2hex(a, 3, sep=", "), "10a, f")

    def test_ba2hex_errors(self):
        a = bitarray('1000 0000 0101 1111', 'little')
        self.assertRaises(ValueError, ba2hex, a, -1)
        self.assertRaises(ValueError, ba2hex, a, group=-1)
        self.assertRaises(TypeError, ba2hex, a, 1, b" ")
        # embedded null character in sep
        self.assertRaises(ValueError, ba2hex, a, 2, "\0")

    def test_hex2ba(self):
        _set_default_endian('big')
        self.assertEqual(hex2ba(''), bitarray())
        for c in 'e', 'E', b'e', b'E', bytearray(b'e'), bytearray(b'E'):
            a = hex2ba(c)
            self.assertEqual(a.to01(), '1110')
            self.assertEqual(a.endian, 'big')
            self.assertIsType(a, 'bitarray')
        self.assertEQUAL(hex2ba('01'), bitarray('0000 0001', 'big'))
        self.assertEQUAL(hex2ba('08', 'little'),
                         bitarray('0000 0001', 'little'))
        self.assertEQUAL(hex2ba('aD'), bitarray('1010 1101', 'big'))
        self.assertEQUAL(hex2ba('10aF'),
                         bitarray('0001 0000 1010 1111', 'big'))
        self.assertEQUAL(hex2ba(b'10 aF', 'little'),
                         bitarray('1000 0000 0101 1111', 'little'))

    def test_hex2ba_whitespace(self):
        _set_default_endian('big')
        self.assertEqual(hex2ba("F1 F2 %s f3 c0" % WHITESPACE),
                         bitarray("11110001 11110010 11110011 11000000"))
        self.assertEQUAL(hex2ba(b' a F ', 'big'),
                         bitarray('1010 1111', 'big'))
        self.assertEQUAL(hex2ba(860 * " " + '0  1D' + 590 * " ", 'little'),
                         bitarray('0000 1000 1011', 'little'))

    def test_hex2ba_errors(self):
        self.assertRaises(TypeError, hex2ba, 0)

        for s in '01a7g89', '0\u20ac', '0 \0', b'\x00':
            self.assertRaises(ValueError, hex2ba, s)

        for s in 'g', 'ag', 'aag' 'aaaga', 'ag':
            msg = "invalid digit found for base16, got 'g' (0x67)"
            self.assertRaisesMessage(ValueError, msg, hex2ba, s, 'big')

    def test_explicit(self):
        data = [ #                       little   big
            ('',                         '',      ''),
            ('1000',                     '1',     '8'),
            ('1000 1100',                '13',    '8c'),
            ('1000 1100 1110',           '137',   '8ce'),
            ('1000 1100 1110 1111' ,     '137f',  '8cef'),
            ('1000 1100 1110 1111 0100', '137f2', '8cef4'),
        ]
        for bs, hex_le, hex_be in data:
            a_be = bitarray(bs, 'big')
            a_le = bitarray(bs, 'little')
            self.assertEQUAL(hex2ba(hex_be, 'big'), a_be)
            self.assertEQUAL(hex2ba(hex_le, 'little'), a_le)
            self.assertEqual(ba2hex(a_be), hex_be)
            self.assertEqual(ba2hex(a_le), hex_le)

    def test_random(self):
        for _ in range(100):
            a = urandom_2(4 * randrange(100))
            s = ba2hex(a, group=randrange(10), sep=randrange(5) * " ")
            b = hex2ba(s, endian=a.endian)
            self.assertEQUAL(a, b)
            self.check_obj(b)

    def test_hexdigits(self):
        for default_endian in 'big', 'little':
            _set_default_endian(default_endian)
            a = hex2ba(hexdigits)
            self.assertEqual(len(a) % 4, 0)
            self.assertEqual(a.endian, default_endian)
            self.assertIsType(a, 'bitarray')
            self.check_obj(a)

            t = ba2hex(a)
            self.assertEqual(t, hexdigits.lower())
            self.assertIsInstance(t, str)
            self.assertEQUAL(a, hex2ba(t, default_endian))

    def test_binascii(self):
        a = urandom(80, 'big')
        s = binascii.hexlify(a.tobytes()).decode()
        self.assertEqual(ba2hex(a), s)
        b = bitarray(binascii.unhexlify(s), endian='big')
        self.assertEQUAL(hex2ba(s, 'big'), b)

# ---------------------------------------------------------------------------

class BaseTests(unittest.TestCase, Util):

    def test_ba2base(self):
        s = ba2base(16, bitarray('1101 0100', 'big'))
        self.assertIsInstance(s, str)
        self.assertEqual(s, 'd4')

    def test_base2ba(self):
        _set_default_endian('big')
        for c in 'e', 'E', b'e', b'E':
            a = base2ba(16, c)
            self.assertEqual(a.to01(), '1110')
            self.assertEqual(a.endian, 'big')
            self.assertIsType(a, 'bitarray')

    def test_base2ba_whitespace(self):
        self.assertEqual(base2ba(8, bytearray(b"17 0"), "little"),
                         bitarray("100 111 000"))
        self.assertEqual(base2ba(32, "7 A"), bitarray("11111 00000"))
        self.assertEqual(base2ba(64, b"A /"), bitarray("000000 111111"))
        for n in 2, 4, 8, 16, 32, 64:
            a = base2ba(n, WHITESPACE)
            self.assertEqual(a, bitarray())
            a = urandom(60)
            c = list(ba2base(n, a))
            for _ in range(randrange(80)):
                c.insert(randint(0, len(c)), choice(WHITESPACE))
            s = ''.join(c)
            self.assertEqual(base2ba(n, s), a)

    def test_ba2base_group(self):
        a = bitarray("001 011 100 111", "little")
        self.assertEqual(ba2base(8, a, 3), "461 7")
        self.assertEqual(ba2base(8, a, group=2), "46 17")
        self.assertEqual(ba2base(8, a, sep="_", group=2), "46_17")
        self.assertEqual(ba2base(8, a, 2, sep="."), "46.17")
        for n, s, group, sep, res in [
                (2, '10100', 2, '-', '10-10-0'),
                (4, '10 11 00 01', 1, "_", "2_3_0_1"),
                (8, "101 100 011 101 001 010", 3, "  ", "543  512"),
                (8, "101 100 011 101 001 010", 3, "", "543512"),
                (16, '1011 0001 1101 1010 1111', 4, "+", "b1da+f"),
                (32, "10110 00111 01101 01111", 2, ", ", "WH, NP"),
                (64, "101100 011101 101011 111110 101110", 2, ".", "sd.r+.u"),
                ]:
            a = bitarray(s, "big")
            s = ba2base(n, a, group, sep)
            self.assertIsInstance(s, str)
            self.assertEqual(s, res)

    def test_explicit(self):
        data = [ #              n  little   big
            ('',                2, '',      ''),
            ('1 0 1',           2, '101',   '101'),
            ('11 01 00',        4, '320',   '310'),
            ('111 001',         8, '74',    '71'),
            ('1111 0001',      16, 'f8',    'f1'),
            ('11111 00001',    32, '7Q',    '7B'),
            ('111111 000001',  64, '/g',    '/B'),
        ]
        for bs, n, s_le, s_be in data:
            a_le = bitarray(bs, 'little')
            a_be = bitarray(bs, 'big')
            self.assertEQUAL(base2ba(n, s_le, 'little'), a_le)
            self.assertEQUAL(base2ba(n, s_be, 'big'),    a_be)
            self.assertEqual(ba2base(n, a_le), s_le)
            self.assertEqual(ba2base(n, a_be), s_be)

    def test_empty(self):
        for n in 2, 4, 8, 16, 32, 64:
            a = base2ba(n, '')
            self.assertEqual(a, bitarray())
            self.assertEqual(ba2base(n, a), '')

    def test_invalid_characters(self):
        for n, s in ((2, '2'), (4, '4'), (8, '8'), (16, 'g'), (32, '8'),
                     (32, '1'), (32, 'a'), (64, '-'), (64, '_')):
            msg = ("invalid digit found for base%d, "
                   "got '%s' (0x%02x)" % (n, s, ord(s)))
            self.assertRaisesMessage(ValueError, msg, base2ba, n, s)

        for n in 2, 4, 8, 16, 32, 64:
            for s in '_', '@', '[', '\u20ac', '\0',  b'\0', b'\x80', b'\xff':
                self.assertRaises(ValueError, base2ba, n, s)
            msg = "invalid digit found for base%d, got '{' (0x7b)" % n
            self.assertRaisesMessage(ValueError, msg, base2ba, n, '{')

    def test_invalid_args(self):
        a = bitarray()
        self.assertRaises(TypeError, ba2base, None, a)
        self.assertRaises(TypeError, base2ba, None, '')
        self.assertRaises(TypeError, ba2base, 16.0, a)
        self.assertRaises(TypeError, base2ba, 16.0, '')
        for i in range(-10, 100):
            if i in (2, 4, 8, 16, 32, 64):
                continue
            self.assertRaises(ValueError, ba2base, i, a)
            self.assertRaises(ValueError, base2ba, i, '')

        self.assertRaises(TypeError, ba2base, 32, None)
        self.assertRaises(TypeError, base2ba, 32, None)

    def test_binary(self):
        a = base2ba(2, '1011')
        self.assertEqual(a, bitarray('1011'))
        self.assertEqual(ba2base(2, a), '1011')

        for a in self.randombitarrays():
            s = ba2base(2, a)
            self.assertEqual(s, a.to01())
            self.assertEQUAL(base2ba(2, s, a.endian), a)

    def test_quaternary(self):
        a = base2ba(4, '0123', 'big')
        self.assertEqual(a, bitarray('00 01 10 11'))
        self.assertEqual(ba2base(4, a), '0123')

    def test_octal(self):
        a = base2ba(8, '0147', 'big')
        self.assertEqual(a, bitarray('000 001 100 111'))
        self.assertEqual(ba2base(8, a), '0147')

    def test_hexadecimal(self):
        a = base2ba(16, 'F61', 'big')
        self.assertEqual(a, bitarray('1111 0110 0001'))
        self.assertEqual(ba2base(16, a), 'f61')

        for n in range(50):
            s = ''.join(choice(hexdigits) for _ in range(n))
            endian = self.random_endian()
            a = base2ba(16, s, endian)
            self.assertEQUAL(a, hex2ba(s, endian))
            self.assertEqual(ba2base(16, a), ba2hex(a))

    def test_base32(self):
        a = base2ba(32, '7SH', 'big')
        self.assertEqual(a, bitarray('11111 10010 00111'))
        self.assertEqual(ba2base(32, a), '7SH')

        msg = os.urandom(randint(10, 100) * 5)
        s = base64.b32encode(msg).decode()
        a = base2ba(32, s, 'big')
        self.assertEqual(a.tobytes(), msg)
        self.assertEqual(ba2base(32, a), s)

    def test_base64(self):
        a = base2ba(64, '/jH', 'big')
        self.assertEqual(a, bitarray('111111 100011 000111'))
        self.assertEqual(ba2base(64, a), '/jH')

        msg = os.urandom(randint(10, 100) * 3)
        s = base64.standard_b64encode(msg).decode()
        a = base2ba(64, s, 'big')
        self.assertEqual(a.tobytes(), msg)
        self.assertEqual(ba2base(64, a), s)

    alphabets = [
    #    m   n  alphabet
        (1,  2, '01'),
        (2,  4, '0123'),
        (3,  8, '01234567'),
        (4, 16, '0123456789abcdef'),
        (5, 32, 'ABCDEFGHIJKLMNOPQRSTUVWXYZ234567'),
        (6, 64, 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdef'
                'ghijklmnopqrstuvwxyz0123456789+/'),
    ]

    def test_alphabets(self):
        for m, n, alphabet in self.alphabets:
            self.assertEqual(1 << m, n)
            self.assertEqual(len(alphabet), n)
            for i, c in enumerate(alphabet):
                endian = self.random_endian()
                self.assertEqual(ba2int(base2ba(n, c, endian)), i)
                self.assertEqual(ba2base(n, int2ba(i, m, endian)), c)

    def test_not_alphabets(self):
        for m, n, alphabet in self.alphabets:
            for i in range(256):
                c = chr(i)
                if c in alphabet or c in WHITESPACE:
                    continue
                if n == 16 and c in "ABCDEF":
                    continue
                self.assertRaises(ValueError, base2ba, n, c)

    def test_random(self):
        for _ in range(100):
            m = randint(1, 6)
            a = urandom_2(m * randrange(100))
            self.assertEqual(len(a) % m, 0)
            n = 1 << m
            s = ba2base(n, a, group=randrange(10), sep=randrange(5) * " ")
            b = base2ba(n, s, a.endian)
            self.assertEQUAL(a, b)
            self.check_obj(b)

# ---------------------------------------------------------------------------

class SC_Tests(unittest.TestCase, Util):

    def test_explicit(self):
        for b, bits, endian in [
                (b'\x00\0',                 '',                  'little'),
                (b'\x01\x03\x01\x03\0',     '110',               'little'),
                (b'\x11\x07\x01\x02\0',     '0000001',           'big'),
                (b'\x01\x10\x02\xf0\x0f\0', '00001111 11110000', 'little'),
                (b'\x11\x10\xa1\x0c\0',     '00000000 00001000', 'big'),
                (b'\x11\x09\xa1\x08\0',     '00000000 1',        'big'),
                (b'\x01E\xa3ABD\0',         65 * '0' + '1101',   'little'),
        ]:
            a = bitarray(bits, endian)
            self.assertEqual(sc_encode(a), b)
            self.assertEqual(sc_decode(b), a)

    def test_decode_header_nbits(self):
        for b, n in [
                (b'\x00\0', 0),
                (b'\x01\x00\0', 0),
                (b'\x01\x01\0', 1),
                (b'\x02\x00\x00\0', 0),
                (b'\x02\x00\x01\0', 256),
                (b'\x03\x00\x00\x00\0', 0),
                (b'\x03\x00\x00\x01\0', 65536),
        ]:
            a = sc_decode(b)
            self.assertEqual(len(a), n)
            self.assertFalse(a.any())

    def test_decode_untouch(self):
        stream = iter(b'\x01\x03\x01\x03\0XYZ')
        self.assertEqual(sc_decode(stream), bitarray('110'))
        self.assertEqual(next(stream), ord('X'))

        stream = iter([0x11, 0x05, 0x01, 0xff, 0, None, 'foo'])
        self.assertEqual(sc_decode(stream), bitarray('11111'))
        self.assertIsNone(next(stream))
        self.assertEqual(next(stream), 'foo')

    def test_decode_header_errors(self):
        # invalid header
        for c in 0x20, 0x21, 0x40, 0x80, 0xc0, 0xf0, 0xff:
            self.assertRaisesMessage(ValueError,
                                     "invalid header: 0x%02x" % c,
                                     sc_decode,
                                     bytearray([c]))
        # invalid block head
        for c in 0xc0, 0xc1, 0xc5, 0xff:
            self.assertRaisesMessage(ValueError,
                                     "invalid block head: 0x%02x" % c,
                                     sc_decode,
                                     bytearray([0x01, 0x10, c]))

    def test_decode_header_overflow(self):
        nbytes = SYSINFO[1]
        self.assertRaisesMessage(
            OverflowError,
            "sizeof(Py_ssize_t) = %d: cannot read 9 bytes" % nbytes,
            sc_decode, b'\x09' + 9 * b'\x00')

        self.assertRaisesMessage(
            ValueError,
            "read %d bytes got negative value: -1" % nbytes,
            sc_decode, bytes(bytearray([nbytes] + nbytes * [0xff])))

        if nbytes == 4:
            self.assertRaisesMessage(
                OverflowError,
                "sizeof(Py_ssize_t) = 4: cannot read 5 bytes",
                sc_decode, b'\x05' + 5 * b'\x00')

            self.assertRaisesMessage(
                ValueError,
                "read 4 bytes got negative value: -2147483648",
                sc_decode, b'\x04\x00\x00\x00\x80')

    def test_decode_errors(self):
        # too many raw bytes
        self.assertRaisesMessage(
            ValueError, "decode error (raw): 0 + 2 > 1",
            sc_decode, b"\x01\x05\x02\xff\xff\0")
        self.assertRaisesMessage(
            ValueError, "decode error (raw): 32 + 3 > 34",
            sc_decode, b"\x02\x0f\x01\xa0\x03\xff\xff\xff\0")
        # sparse index too high
        self.assertRaisesMessage(
            ValueError, "decode error (n=1): 128 >= 128",
            sc_decode, b"\x01\x80\xa1\x80\0")
        self.assertRaisesMessage(
            ValueError, "decode error (n=2): 512 >= 512",
            sc_decode, b"\x02\x00\x02\xc2\x01\x00\x02\0")
        self.assertRaisesMessage(
            ValueError, "decode error (n=3): 32768 >= 32768",
            sc_decode, b"\x02\x00\x80\xc3\x01\x00\x80\x00\0")

        if SYSINFO[1] == 4:
            msg = "read 4 bytes got negative value: -2147483648"
        else:
            msg = "decode error (n=4): 2147483648 >= 16"
        self.assertRaisesMessage(
            ValueError, msg,
            sc_decode, b"\x01\x10\xc4\x01\x00\x00\x00\x80\0")

        if SYSINFO[1] == 4:
            msg = "read 4 bytes got negative value: -1"
        else:
            msg = "decode error (n=4): 4294967295 >= 16"
        self.assertRaisesMessage(
            ValueError, msg,
            sc_decode, b"\x01\x10\xc4\x01\xff\xff\xff\xff\0")

    def test_decode_end_of_stream(self):
        for stream in [b'', b'\x00', b'\x01', b'\x02\x77',
                       b'\x01\x04\x01', b'\x01\x04\xa1', b'\x01\x04\xa0']:
            self.assertRaisesMessage(ValueError, "unexpected end of stream",
                                     sc_decode, stream)

    def test_decode_types(self):
        blob = b'\x11\x03\x01\x20\0'
        for b in blob, bytearray(blob), list(blob), array.array('B', blob):
            a = sc_decode(b)
            self.assertIsType(a, 'bitarray')
            self.assertEqual(a.endian, 'big')
            self.assertEqual(a.to01(), '001')

        a = [17, 3, 1, 32, 0]
        self.assertEqual(sc_decode(a), bitarray("001"))
        for x in 256, -1:
            a[-1] = x
            self.assertRaises(ValueError, sc_decode, a)

        self.assertRaises(TypeError, sc_decode, [0x02, None])
        for x in None, 3, 3.2, Ellipsis:
            self.assertRaises(TypeError, sc_decode, x)
        for _ in range(10):
            self.assertRaises(TypeError, sc_decode, [0x00, None])

    def test_decode_ambiguity(self):
        for b in [
                # raw:
                b'\x11\x03\x01\x20\0',    # this is what sc_encode gives us
                b'\x11\x03\x01\x2f\0',    # some pad bits are 1
                # sparse:
                b'\x11\x03\xa1\x02\0',                  # using block type 1
                b'\x11\x03\xc2\x01\x02\x00\0',          # using block type 2
                b'\x11\x03\xc3\x01\x02\x00\x00\0',      # using block type 3
                b'\x11\x03\xc4\x01\x02\x00\x00\x00\0',  # using block type 4
        ]:
            a = sc_decode(b)
            self.assertEqual(a.to01(), '001')

    def test_sparse_block_type1(self):
        a = bitarray(256, 'little')
        for n in range(1, 32):
            positions = os.urandom(n)
            b = bytearray([0x02, 0x00, 0x01, 0xa0 + n])
            b.extend(positions)
            b.append(0)  # stop byte

            a.setall(0)
            a[positions] = 1
            self.assertEqual(sc_decode(b), a)

            # in order to recreate the block sc_encode generates, we need
            # a sorted list of the positions with no duplicates
            lst = sorted(set(positions))
            b = bytearray([0x02, 0x00, 0x01, 0xa0 + len(lst)])
            b.extend(lst)
            b.append(0)  # stop

            self.assertEqual(sc_decode(b), a)
            self.assertEqual(sc_encode(a), bytes(b))

    def test_decode_random_bytes(self):
        # ensure random input doesn't crash the decoder
        for _ in range(100):
            n = randrange(20)
            b = b'\x02\x00\x04' + os.urandom(n)
            try:
                a = sc_decode(b)
            except ValueError as e:
                if e != 'unexpected end of stream':
                    continue
            self.assertEqual(len(a), 1024)
            self.assertEqual(a.endian, 'little')

    def test_encode_types(self):
        for a in bitarray('1', 'big'), frozenbitarray('1', 'big'):
            b = sc_encode(a)
            self.assertIsInstance(b, bytes)
            self.assertEqual(b, b'\x11\x01\x01\x80\0')

        for a in None, [], 0, 123, b'', b'\x00', 3.14:
            self.assertRaises(TypeError, sc_encode, a)

    def round_trip(self, a):
        c = a.copy()
        i = iter(sc_encode(a))
        b = sc_decode(i)
        self.assertTrue(a == b == c)
        self.assertTrue(a.endian == b.endian == c.endian)
        self.assertEqual(bytes(i), b'')

    def test_encode_zeros(self):
        for i in range(18):
            n = 1 << i
            a = zeros(n)
            m = 2                            # head byte and stop byte
            m += bits2bytes(n.bit_length())  # size bytes
            #print(i, n, m, sc_encode(a))
            self.assertEqual(m, len(sc_encode(a)))
            self.round_trip(a)

            a[0] = 1
            m += 2                  # block head byte and one index byte
            m += 2 * bool(n > 512)  # second block head and second index byte
            m += bool(n > 65536)    # third index byte
            self.assertEqual(m, len(sc_encode(a)))
            self.round_trip(a)

        a = zeros(1 << 25, 'big')
        a[0] = 1
        self.assertEqual(
            sc_encode(a),
            b'\x14\x00\x00\x00\x02\xc4\x01\x00\x00\x00\x00\x00')

    def test_encode_ones(self):
        for _ in range(50):
            nbits = randrange(100000)
            a = ones(nbits)
            m = 2                                # head byte and stop byte
            m += bits2bytes(nbits.bit_length())  # size bytes
            nbytes = bits2bytes(nbits)
            m += (nbytes // 32 + 127) // 128  # number of blocks (head bytes)
            m += bool(nbytes % 32)            # block type 0 range(1, 32)
            m += nbytes                       # actual raw bytes
            self.assertEqual(m, len(sc_encode(a)))
            self.round_trip(a)

    def test_random(self):
        for _ in range(10):
            n = randrange(100000)
            endian = self.random_endian()
            a = ones(n, endian)
            for _ in range(16):
                a &= urandom(n, endian)
                self.round_trip(a)

# ---------------------------------------------------------------------------

@skipIf(not DEBUG)
class RTS_Tests(unittest.TestCase):

    # Internal functionality exposed for the purpose of testing.
    # This class will only be part of the test suite in debug mode.

    def test_segsize(self):
        self.assertIsInstance(_SEGSIZE, int)
        self.assertTrue(_SEGSIZE in [8, 16, 32])

    def test_rts_empty(self):
        rts = _sc_rts(bitarray())
        self.assertEqual(len(rts), 1)
        self.assertEqual(rts, [0])

    @skipIf(SEGBITS != 256)
    def test_rts_example(self):
        # see example before sc_calc_rts() in _util.c
        a = zeros(987)
        a[:5] = a[512:515] = a[768:772] = 1
        self.assertEqual(a.count(), 12)
        rts = _sc_rts(a)
        self.assertIsInstance(rts, list)
        self.assertEqual(len(rts), 5)
        self.assertEqual(rts, [0, 5, 5, 8, 12])

    def test_rts_ones(self):
        for _ in range(20):
            n = randrange(10000)
            a = ones(n)
            rts = _sc_rts(a)
            self.assertEqual(len(rts), (n + SEGBITS - 1) // SEGBITS + 1)
            self.assertEqual(rts[0], 0)
            self.assertEqual(rts[-1], n)
            for i, v in enumerate(rts):
                self.assertEqual(v, min(SEGBITS * i, n))

    def test_rts_random(self):
        for _ in range(20):
            n = randrange(10000)
            a = urandom(n)
            rts = _sc_rts(a)
            self.assertEqual(len(rts), (n + SEGBITS - 1) // SEGBITS + 1)
            self.assertEqual(rts[0], 0)
            self.assertEqual(rts[-1], a.count())
            for i in range(len(rts) - 1):
                seg_pop = a.count(1, SEGBITS * i, SEGBITS * (i + 1))
                self.assertEqual(rts[i + 1] - rts[i], seg_pop)

# ---------------------------------------------------------------------------

class VLFTests(unittest.TestCase, Util):

    def test_explicit(self):
        for s, bits in [
                (b'\x40', ''),
                (b'\x30', '0'),
                (b'\x38', '1'),
                (b'\x00', '0000'),
                (b'\x01', '0001'),
                (b'\xe0\x40', '0000 1'),
                (b'\x90\x02', '0000 000001'),
                (b'\xb5\xa7\x18', '0101 0100111 0011'),
        ]:
            a = bitarray(bits)
            self.assertEqual(vl_encode(a), s)
            self.assertEqual(vl_decode(s), a)

    def test_encode(self):
        for endian in 'big', 'little':
            s = vl_encode(bitarray('001101', endian))
            self.assertIsInstance(s, bytes)
            self.assertEqual(s, b'\xd3\x20')

    def test_decode_args(self):
        self.assertRaises(TypeError, vl_decode, 'foo')
        # item not integer
        self.assertRaises(TypeError, vl_decode, iter([b'\x40']))

        self.assertRaises(TypeError, vl_decode, b'\x40', 'big', 3)
        self.assertRaises(ValueError, vl_decode, b'\x40', 'foo')
        # these objects are not iterable
        for arg in None, 0, 1, 0.0:
            self.assertRaises(TypeError, vl_decode, arg)
        # these items cannot be interpreted as ints
        for item in None, 2.34, Ellipsis:
            self.assertRaises(TypeError, vl_decode, iter([0x95, item]))

        b = b'\xd3\x20'
        lst = [b, iter(b), memoryview(b)]
        lst.append(iter([0xd3, 0x20]))
        lst.append(bytearray(b))
        for s in lst:
            a = vl_decode(s, endian=self.random_endian())
            self.assertIsType(a, 'bitarray')
            self.assertEqual(a, bitarray('0011 01'))

    def test_decode_endian(self):
        blob = b'\xd3\x20'
        res = bitarray('0011 01')

        for default_endian in 'little', 'big':
            _set_default_endian(default_endian)

            for endian in 'little', 'big', None:
                a = vl_decode(blob, endian)
                self.assertEqual(a, res)
                self.assertEqual(a.endian,
                                 endian if endian else default_endian)

            a = vl_decode(blob)
            self.assertEqual(a, res)
            self.assertEqual(a.endian, default_endian)

    def test_decode_trailing(self):
        for s, bits in [(b'\x40ABC', ''),
                        (b'\xe0\x40A', '00001')]:
            stream = iter(s)
            self.assertEqual(vl_decode(stream), bitarray(bits))
            self.assertEqual(next(stream), 65)

    def test_decode_ambiguity(self):
        for s in b'\x40', b'\x4f', b'\x45':
            self.assertEqual(vl_decode(iter(s)), bitarray())
        for s in b'\x1e', b'\x1f':
            self.assertEqual(vl_decode(iter(s)), bitarray('111'))

    def test_decode_stream(self):
        stream = iter(b'\x40\x30\x38\x40\x2c\xe0\x40\xd3\x20')
        for bits in '', '0', '1', '', '11', '0000 1', '0011 01':
            self.assertEqual(vl_decode(stream), bitarray(bits))

        arrays = [urandom(randrange(30)) for _ in range(1000)]
        stream = iter(b''.join(vl_encode(a) for a in arrays))
        for a in arrays:
            self.assertEqual(vl_decode(stream), a)

    def test_decode_errors(self):
        # decode empty bits
        self.assertRaises(ValueError, vl_decode, b'')
        # invalid number of padding bits
        for s in b'\x50', b'\x60', b'\x70':
            self.assertRaises(ValueError, vl_decode, s)
        self.assertRaises(ValueError, vl_decode, b'\xf0')
        # high bit set, but no terminating byte
        for s in b'\x80', b'\x80\x80':
            self.assertRaises(ValueError, vl_decode, s)
        # decode list with out of range items
        for i in -1, 256:
            self.assertRaises(ValueError, vl_decode, [i])
        # wrong type
        self.assertRaises(TypeError, vl_decode, [None])

    def test_decode_invalid_stream(self):
        N = 100
        s = iter(N * (3 * [0x80] + ['XX']) + ['end.'])
        for _ in range(N):
            a = None
            try:
                a = vl_decode(s)
            except TypeError:
                pass
            self.assertIsNone(a)
        self.assertEqual(next(s), 'end.')

    def test_explicit_zeros(self):
        for n in range(100):
            a = zeros(4 + n * 7)
            s = n * b'\x80' + b'\x00'
            self.assertEqual(vl_encode(a), s)
            self.assertEqual(vl_decode(s), a)

    def round_trip(self, a):
        c = a.copy()
        s = vl_encode(a)
        b = vl_decode(s)
        self.assertTrue(a == b == c)
        LEN_PAD_BITS = 3
        self.assertEqual(len(s), (len(a) + LEN_PAD_BITS + 6) // 7)

        head = s[0]
        padding = (head & 0x70) >> 4
        self.assertEqual(len(a) + padding, 7 * len(s) - LEN_PAD_BITS)

    def test_range(self):
        for n in range(500):
            self.round_trip(urandom(n))

    def test_large(self):
        a = urandom(randint(50000, 100000))
        self.round_trip(a)

    def test_random(self):
        for a in self.randombitarrays():
            self.round_trip(a)

# ---------------------------------------------------------------------------

class IntegerizationTests(unittest.TestCase, Util):

    def test_ba2int(self):
        self.assertEqual(ba2int(bitarray('0')), 0)
        self.assertEqual(ba2int(bitarray('1')), 1)
        self.assertEqual(ba2int(bitarray('00101', 'big')), 5)
        self.assertEqual(ba2int(bitarray('00101', 'little')), 20)
        self.assertEqual(ba2int(frozenbitarray('11')), 3)
        self.assertRaises(ValueError, ba2int, bitarray())
        self.assertRaises(ValueError, ba2int, frozenbitarray())
        self.assertRaises(TypeError, ba2int, '101')
        a = bitarray('111')
        b = a.copy()
        self.assertEqual(ba2int(a), 7)
        # ensure original object wasn't altered
        self.assertEQUAL(a, b)

    def test_ba2int_frozen(self):
        for a in self.randombitarrays(start=1):
            b = frozenbitarray(a)
            self.assertEqual(ba2int(b), ba2int(a))
            self.assertEQUAL(a, b)

    def test_ba2int_random(self):
        for a in self.randombitarrays(start=1):
            b = bitarray(a, 'big')
            self.assertEqual(a, b)
            self.assertEqual(ba2int(b), int(b.to01(), 2))

    def test_ba2int_bytes(self):
        for n in range(1, 50):
            a = urandom_2(8 * n)
            c = bytearray(a.tobytes())
            i = 0
            for x in (c if a.endian == 'big' else reversed(c)):
                i <<= 8
                i |= x
            self.assertEqual(ba2int(a), i)

    def test_int2ba(self):
        self.assertEqual(int2ba(0), bitarray('0'))
        self.assertEqual(int2ba(1), bitarray('1'))
        self.assertEqual(int2ba(5), bitarray('101'))
        self.assertEQUAL(int2ba(6, endian='big'), bitarray('110', 'big'))
        self.assertEQUAL(int2ba(6, endian='little'),
                         bitarray('011', 'little'))
        self.assertRaises(TypeError, int2ba, 1.0)
        self.assertRaises(TypeError, int2ba, 1, 3.0)
        self.assertRaises(ValueError, int2ba, 1, 0)
        self.assertRaises(TypeError, int2ba, 1, 10, 123)
        self.assertRaises(ValueError, int2ba, 1, 10, 'asd')
        # signed integer requires length
        self.assertRaises(TypeError, int2ba, 100, signed=True)

    def test_signed(self):
        for s, i in [
                ('0',  0),
                ('1', -1),
                ('00',  0),
                ('10',  1),
                ('01', -2),
                ('11', -1),
                ('000',  0),
                ('100',  1),
                ('010',  2),
                ('110',  3),
                ('001', -4),
                ('101', -3),
                ('011', -2),
                ('111', -1),
                ('00000',   0),
                ('11110',  15),
                ('00001', -16),
                ('11111',  -1),
                ('00000000 0',    0),
                ('11111111 0',  255),
                ('00000000 1', -256),
                ('11111111 1',   -1),
        ]:
            self.assertEqual(ba2int(bitarray(s, 'little'), signed=1), i)
            self.assertEqual(ba2int(bitarray(s[::-1], 'big'), signed=1), i)

            len_s = len(bitarray(s))
            self.assertEQUAL(int2ba(i, len_s, 'little', signed=1),
                             bitarray(s, 'little'))
            self.assertEQUAL(int2ba(i, len_s, 'big', signed=1),
                             bitarray(s[::-1], 'big'))

    def test_zero(self):
        for endian in "little", "big":
            a = int2ba(0, endian=endian)
            self.assertEQUAL(a, bitarray('0', endian=endian))
            for n in range(1, 100):
                a = int2ba(0, length=n, endian=endian, signed=True)
                b = bitarray(n * '0', endian)
                self.assertEQUAL(a, b)
                for signed in 0, 1:
                    self.assertEqual(ba2int(b, signed=signed), 0)

    def test_negative_one(self):
        for endian in "little", "big":
            for n in range(1, 100):
                a = int2ba(-1, length=n, endian=endian, signed=True)
                b = bitarray(n * '1', endian)
                self.assertEQUAL(a, b)
                self.assertEqual(ba2int(b, signed=True), -1)

    def test_int2ba_overflow(self):
        self.assertRaises(OverflowError, int2ba, -1)
        self.assertRaises(OverflowError, int2ba, -1, 4)

        self.assertRaises(OverflowError, int2ba, 128, 7)
        self.assertRaises(OverflowError, int2ba, 64, 7, signed=1)
        self.assertRaises(OverflowError, int2ba, -65, 7, signed=1)

        for n in range(1, 20):
            self.assertRaises(OverflowError, int2ba, 1 << n, n)
            self.assertRaises(OverflowError, int2ba, 1 << (n - 1), n,
                              signed=1)
            self.assertRaises(OverflowError, int2ba, -(1 << (n - 1)) - 1, n,
                              signed=1)

    def test_int2ba_length(self):
        self.assertRaises(TypeError, int2ba, 0, 1.0)
        self.assertRaises(ValueError, int2ba, 0, 0)
        self.assertEqual(int2ba(5, length=6, endian='big'),
                         bitarray('000101'))
        for n in range(1, 100):
            ab = int2ba(1, n, 'big')
            al = int2ba(1, n, 'little')
            self.assertEqual(ab.endian, 'big')
            self.assertEqual(al.endian, 'little')
            self.assertEqual(len(ab), n),
            self.assertEqual(len(al), n)
            self.assertEqual(ab, bitarray((n - 1) * '0') + bitarray('1'))
            self.assertEqual(al, bitarray('1') + bitarray((n - 1) * '0'))

            ab = int2ba(0, n, 'big')
            al = int2ba(0, n, 'little')
            self.assertEqual(len(ab), n)
            self.assertEqual(len(al), n)
            self.assertEqual(ab, bitarray(n * '0', 'big'))
            self.assertEqual(al, bitarray(n * '0', 'little'))

            self.assertEqual(int2ba(2 ** n - 1), bitarray(n * '1'))
            self.assertEqual(int2ba(2 ** n - 1, endian='little'),
                             bitarray(n * '1'))

    def test_explicit(self):
        _set_default_endian('big')
        for i, sa in [( 0,     '0'),    (1,         '1'),
                      ( 2,    '10'),    (3,        '11'),
                      (25, '11001'),  (265, '100001001'),
                      (3691038, '1110000101001000011110')]:
            ab = bitarray(sa, 'big')
            al = bitarray(sa[::-1], 'little')
            self.assertEQUAL(int2ba(i), ab)
            self.assertEQUAL(int2ba(i, endian='big'), ab)
            self.assertEQUAL(int2ba(i, endian='little'), al)
            self.assertEqual(ba2int(ab), ba2int(al), i)

    def check_round_trip(self, i):
        for endian in 'big', 'little':
            a = int2ba(i, endian=endian)
            self.check_obj(a)
            self.assertEqual(a.endian, endian)
            self.assertTrue(len(a) > 0)
            # ensure we have no leading zeros
            if a.endian == 'big':
                self.assertTrue(len(a) == 1 or a.index(1) == 0)
            self.assertEqual(ba2int(a), i)
            if i > 0:
                self.assertEqual(i.bit_length(), len(a))
            # add a few trailing / leading zeros to bitarray
            if endian == 'big':
                a = zeros(randrange(4), endian) + a
            else:
                a = a + zeros(randrange(4), endian)
            self.assertEqual(a.endian, endian)
            self.assertEqual(ba2int(a), i)

    def test_many(self):
        for _ in range(20):
            self.check_round_trip(randrange(10 ** randint(3, 300)))

    @staticmethod
    def twos_complement(i, num_bits):
        # https://en.wikipedia.org/wiki/Two%27s_complement
        mask = 2 ** (num_bits - 1)
        return -(i & mask) + (i & ~mask)

    def test_random_signed(self):
        for a in self.randombitarrays(start=1):
            i = ba2int(a, signed=True)
            b = int2ba(i, len(a), a.endian, signed=True)
            self.assertEQUAL(a, b)

            j = ba2int(a, signed=False)  # unsigned
            if i >= 0:
                self.assertEqual(i, j)

            self.assertEqual(i, self.twos_complement(j, len(a)))

# ---------------------------------------------------------------------------

class MixedTests(unittest.TestCase, Util):

    def test_bin(self):
        for i in range(100):
            s = bin(i)
            self.assertEqual(s[:2], '0b')
            a = bitarray(s[2:], 'big')
            self.assertEqual(ba2int(a), i)
            t = '0b%s' % a.to01()
            self.assertEqual(t, s)
            self.assertEqual(eval(t), i)

    def test_oct(self):
        for i in range(1000):
            s = oct(i)
            self.assertEqual(s[:2], '0o')
            a = base2ba(8, s[2:], 'big')
            self.assertEqual(ba2int(a), i)
            t = '0o%s' % ba2base(8, a)
            self.assertEqual(t, s)
            self.assertEqual(eval(t), i)

    def test_hex(self):
        for i in range(1000):
            s = hex(i)
            self.assertEqual(s[:2], '0x')
            a = hex2ba(s[2:], 'big')
            self.assertEqual(ba2int(a), i)
            t = '0x%s' % ba2hex(a)
            self.assertEqual(t, s)
            self.assertEqual(eval(t), i)

    def test_bitwise(self):
        for a in self.randombitarrays(start=1):
            b = urandom(len(a), a.endian)
            aa = a.copy()
            bb = b.copy()
            i = ba2int(a)
            j = ba2int(b)
            self.assertEqual(ba2int(a & b), i & j)
            self.assertEqual(ba2int(a | b), i | j)
            self.assertEqual(ba2int(a ^ b), i ^ j)

            n = randint(0, len(a))
            if a.endian == 'big':
                self.assertEqual(ba2int(a >> n), i >> n)
                c = zeros(len(a), 'big') + a
                self.assertEqual(ba2int(c << n), i << n)

            self.assertEQUAL(a, aa)
            self.assertEQUAL(b, bb)

    def test_bitwise_inplace(self):
        for a in self.randombitarrays(start=1):
            b = urandom(len(a), a.endian)
            bb = b.copy()
            i = ba2int(a)
            j = ba2int(b)
            c = a.copy()
            c &= b
            self.assertEqual(ba2int(c), i & j)
            c = a.copy()
            c |= b
            self.assertEqual(ba2int(c), i | j)
            c = a.copy()
            c ^= b
            self.assertEqual(ba2int(c), i ^ j)
            self.assertEQUAL(b, bb)

            n = randint(0, len(a))
            if a.endian == 'big':
                c = a.copy()
                c >>= n
                self.assertEqual(ba2int(c), i >> n)
                c = zeros(len(a), 'big') + a
                c <<= n
                self.assertEqual(ba2int(c), i << n)

    def test_primes(self):  # Sieve of Eratosthenes
        sieve = ones(10000)
        sieve[:2] = 0  # zero and one are not prime
        for i in range(2, 100):
            if sieve[i]:
                sieve[i * i::i] = 0
        # primes up to 40
        self.assertEqual(list(sieve.search(1, 0, 40)),
                         [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37])
        # there are 1229 primes between 1 and 10000
        self.assertEqual(sieve.count(1), 1229)
        # there are 119 primes between 4000 and 5000
        self.assertEqual(sieve.count(1, 4000, 5000), 119)
        # the 1000th prime is 7919
        self.assertEqual(count_n(sieve, 1000) - 1, 7919)

# ---------------------------------------------------------------------------

class SerializationTests(unittest.TestCase, Util):

    def test_explicit(self):
        for blob, endian, bits in [
                (b'\x00',         'little', ''),
                (b'\x07\x01',     'little', '1'),
                (b'\x17\x80',     'big',    '1'),
                (b'\x13\xf8',     'big',    '11111'),
                (b'\x00\x0f',     'little', '11110000'),
                (b'\x10\xf0',     'big',    '11110000'),
                (b'\x12\x87\xd8', 'big',    '10000111 110110')
        ]:
            a = bitarray(bits, endian)
            s = serialize(a)
            self.assertEqual(blob, s)
            self.assertIsInstance(s, bytes)

            b = deserialize(blob)
            self.assertEqual(b, a)
            self.assertEqual(b.endian, endian)
            self.assertIsType(b, 'bitarray')

    def test_serialize_args(self):
        for x in '0', 0, 1, b'\x00', 0.0, [0, 1], bytearray([0]):
            self.assertRaises(TypeError, serialize, x)
        # no arguments
        self.assertRaises(TypeError, serialize)
        # too many arguments
        self.assertRaises(TypeError, serialize, bitarray(), 1)

        for a in bitarray('0111', 'big'), frozenbitarray('0111', 'big'):
            self.assertEqual(serialize(a), b'\x14\x70')

    def test_deserialize_args(self):
        for x in 0, 1, False, True, None, '', '01', 0.0, [0, 1]:
            self.assertRaises(TypeError, deserialize, x)
        # no arguments
        self.assertRaises(TypeError, deserialize)
        # too many arguments
        self.assertRaises(TypeError, deserialize, b'\x00', 1)

        blob = b'\x03\x06'
        x = bitarray(blob)
        for s in blob, bytearray(blob), memoryview(blob), x:
            a = deserialize(s)
            self.assertEqual(a.to01(), '01100')
            self.assertEqual(a.endian, 'little')

    def test_invalid_bytes(self):
        self.assertRaises(ValueError, deserialize, b'')

        def check_msg(b):
            msg = "invalid header byte: 0x%02x" % b[0]
            self.assertRaisesMessage(ValueError, msg, deserialize, b)

        for i in range(256):
            b = bytes(bytearray([i]))
            if i == 0 or i == 16:
                self.assertEqual(deserialize(b), bitarray())
            else:
                self.assertRaises(ValueError, deserialize, b)
                check_msg(b)

            b += b'\0'
            if i < 32 and i % 16 < 8:
                self.assertEqual(deserialize(b), zeros(8 - i % 8))
            else:
                self.assertRaises(ValueError, deserialize, b)
                check_msg(b)

    def test_bits_ignored(self):
        # the unused padding bits (with the last bytes) are ignored
        for blob, endian in [
                (b'\x07\x01', 'little'),
                (b'\x07\x03', 'little'),
                (b'\x07\xff', 'little'),
                (b'\x17\x80', 'big'),
                (b'\x17\xc0', 'big'),
                (b'\x17\xff', 'big'),
        ]:
            a = deserialize(blob)
            self.assertEqual(a.to01(), '1')
            self.assertEqual(a.endian, endian)

    def test_random(self):
        for a in self.randombitarrays():
            b = serialize(a)
            c = deserialize(b)
            self.assertEqual(a, c)
            self.assertEqual(a.endian, c.endian)
            self.check_obj(c)

# ---------------------------------------------------------------------------

class HuffmanTreeTests(unittest.TestCase):  # tests for _huffman_tree()

    def test_empty(self):
        freq = {}
        self.assertRaises(IndexError, _huffman_tree, freq)

    def test_one_symbol(self):
        freq = {"A": 1}
        tree = _huffman_tree(freq)
        self.assertEqual(tree.symbol, "A")
        self.assertEqual(tree.freq, 1)
        self.assertRaises(AttributeError, getattr, tree, 'child')

    def test_two_symbols(self):
        freq = {"A": 1, "B": 1}
        tree = _huffman_tree(freq)
        self.assertRaises(AttributeError, getattr, tree, 'symbol')
        self.assertEqual(tree.freq, 2)
        self.assertEqual(tree.child[0].symbol, "A")
        self.assertEqual(tree.child[0].freq, 1)
        self.assertEqual(tree.child[1].symbol, "B")
        self.assertEqual(tree.child[1].freq, 1)


class HuffmanTests(unittest.TestCase):

    def test_simple(self):
        freq = {0: 10, 'as': 2, None: 1.6}
        code = huffman_code(freq)
        self.assertEqual(len(code), 3)
        self.assertEqual(len(code[0]), 1)
        self.assertEqual(len(code['as']), 2)
        self.assertEqual(len(code[None]), 2)

    def test_endianness(self):
        freq = {'A': 10, 'B': 2, 'C': 5}
        for endian in 'big', 'little':
            code = huffman_code(freq, endian)
            self.assertEqual(len(code), 3)
            for v in code.values():
                self.assertEqual(v.endian, endian)

    def test_wrong_arg(self):
        self.assertRaises(TypeError, huffman_code, [('a', 1)])
        self.assertRaises(TypeError, huffman_code, 123)
        self.assertRaises(TypeError, huffman_code, None)
        # cannot compare 'a' with 1
        self.assertRaises(TypeError, huffman_code, {'A': 'a', 'B': 1})
        # frequency map cannot be empty
        self.assertRaises(ValueError, huffman_code, {})

    def test_one_symbol(self):
        cnt = {'a': 1}
        code = huffman_code(cnt)
        self.assertEqual(code, {'a': bitarray('0')})
        for n in range(4):
            msg = n * ['a']
            a = bitarray()
            a.encode(code, msg)
            self.assertEqual(a.to01(), n * '0')
            self.assertEqual(list(a.decode(code)), msg)
            a.append(1)
            self.assertRaises(ValueError, list, a.decode(code))

    def check_tree(self, code):
        n = len(code)
        tree = decodetree(code)
        self.assertEqual(tree.todict(), code)
        # ensure tree has 2n-1 nodes (n symbol nodes and n-1 internal nodes)
        self.assertEqual(tree.nodes(), 2 * n - 1)
        # a proper Huffman tree is complete
        self.assertTrue(tree.complete())

    def test_balanced(self):
        n = 6
        freq = {}
        for i in range(1 << n):
            freq[i] = 1
        code = huffman_code(freq)
        self.assertEqual(len(code), 1 << n)
        self.assertTrue(all(len(v) == n for v in code.values()))
        self.check_tree(code)

    def test_unbalanced(self):
        n = 27
        freq = {}
        for i in range(n):
            freq[i] = 1 << i
        code = huffman_code(freq)
        self.assertEqual(len(code), n)
        for i in range(n):
            self.assertEqual(len(code[i]), n - max(1, i))
        self.check_tree(code)

    def test_counter(self):
        message = 'the quick brown fox jumps over the lazy dog.'
        code = huffman_code(Counter(message))
        a = bitarray()
        a.encode(code, message)
        self.assertEqual(''.join(a.decode(code)), message)
        self.check_tree(code)

    def test_random_list(self):
        plain = [randrange(100) for _ in range(500)]
        code = huffman_code(Counter(plain))
        a = bitarray()
        a.encode(code, plain)
        self.assertEqual(list(a.decode(code)), plain)
        self.check_tree(code)

    def test_random_freq(self):
        for n in 2, 3, 4, randint(5, 200):
            # create Huffman code for n symbols
            code = huffman_code({i: random() for i in range(n)})
            self.check_tree(code)

# ---------------------------------------------------------------------------

class CanonicalHuffmanTests(unittest.TestCase, Util):

    def test_basic(self):
        plain = bytearray(b'the quick brown fox jumps over the lazy dog.')
        chc, count, symbol = canonical_huffman(Counter(plain))
        self.assertIsInstance(chc, dict)
        self.assertIsInstance(count, list)
        self.assertIsInstance(symbol, list)
        a = bitarray()
        a.encode(chc, plain)
        self.assertEqual(bytearray(a.decode(chc)), plain)
        self.assertEqual(bytearray(canonical_decode(a, count, symbol)), plain)

    def test_example(self):
        cnt = {'a': 5, 'b': 3, 'c': 1, 'd': 1, 'r': 2}
        codedict, count, symbol = canonical_huffman(cnt)
        self.assertEqual(codedict, {'a': bitarray('0'),
                                    'b': bitarray('10'),
                                    'c': bitarray('1110'),
                                    'd': bitarray('1111'),
                                    'r': bitarray('110')})
        self.assertEqual(count, [0, 1, 1, 1, 2])
        self.assertEqual(symbol, ['a', 'b', 'r', 'c', 'd'])
        a = bitarray('01011001110011110101100')
        msg = "abracadabra"
        self.assertEqual(''.join(a.decode(codedict)), msg)
        self.assertEqual(''.join(canonical_decode(a, count, symbol)), msg)

    def test_canonical_huffman_errors(self):
        self.assertRaises(TypeError, canonical_huffman, [])
        # frequency map cannot be empty
        self.assertRaises(ValueError, canonical_huffman, {})
        self.assertRaises(TypeError, canonical_huffman)
        cnt = huffman_code(Counter('aabc'))
        self.assertRaises(TypeError, canonical_huffman, cnt, 'a')

    def test_one_symbol(self):
        cnt = {'a': 1}
        chc, count, symbol = canonical_huffman(cnt)
        self.assertEqual(chc, {'a': bitarray('0')})
        self.assertEqual(count, [0, 1])
        self.assertEqual(symbol, ['a'])
        for n in range(4):
            msg = n * ['a']
            a = bitarray()
            a.encode(chc, msg)
            self.assertEqual(a.to01(), n * '0')
            self.assertEqual(list(canonical_decode(a, count, symbol)), msg)
            a.append(1)
            self.assertRaises(ValueError, list,
                              canonical_decode(a, count, symbol))

    def test_canonical_decode_errors(self):
        a = bitarray('1101')
        s = ['a']
        # bitarray not of bitarray type
        self.assertRaises(TypeError, canonical_decode, '11', [0, 1], s)
        # count not sequence
        self.assertRaises(TypeError, canonical_decode, a, {0, 1}, s)
        # count element not an int
        self.assertRaises(TypeError, canonical_decode, a, [0, 1.0], s)
        # count element overflow
        self.assertRaises(OverflowError, canonical_decode, a, [0, 1 << 65], s)
        # symbol not sequence
        self.assertRaises(TypeError, canonical_decode, a, [0, 1], 43)

        symbol = ['a', 'b', 'c', 'd']
        # sum(count) != len(symbol)
        self.assertRaisesMessage(ValueError,
                                 "sum(count) = 3, but len(symbol) = 4",
                                 canonical_decode, a, [0, 1, 2], symbol)
        # count list too long
        self.assertRaisesMessage(ValueError,
                                 "len(count) cannot be larger than 32",
                                 canonical_decode, a, 33 * [0], symbol)

    def test_canonical_decode_count_range(self):
        a = bitarray()
        for i in range(1, 32):
            count = 32 * [0]
            # negative count
            count[i] = -1
            self.assertRaisesMessage(ValueError,
                "count[%d] not in [0..%d], got -1" % (i, 1 << i),
                canonical_decode, a, count, [])

            maxbits = 1 << i
            count[i] = maxbits
            if i == 31 and SYSINFO[1] == 4:
                self.assertRaises(OverflowError,
                                  canonical_decode, a, count, [])
                continue
            self.assertRaisesMessage(ValueError,
                "sum(count) = %d, but len(symbol) = 0" % maxbits,
                canonical_decode, a, count, [])

            count[i] = maxbits + 1
            self.assertRaisesMessage(ValueError,
                "count[%d] not in [0..%d], got %d" % (i, maxbits, count[i]),
                canonical_decode, a, count, [])

        iter = canonical_decode(a, 32 * [0], [])
        self.assertEqual(list(iter), [])

    def test_canonical_decode_simple(self):
        # symbols can be anything, they do not even have to be hashable here
        cnt = [0, 0, 4]
        s = ['A', 42, [1.2-3.7j, 4j], {'B': 6}]
        a = bitarray('00 01 10 11')
        # count can be a list
        self.assertEqual(list(canonical_decode(a, cnt, s)), s)
        # count can also be a tuple (any sequence object in fact)
        self.assertEqual(list(canonical_decode(a, (0, 0, 4), s)), s)
        self.assertEqual(list(canonical_decode(7 * a, cnt, s)), 7 * s)
        # the count list may have extra 0's at the end (but not too many)
        count = [0, 0, 4, 0, 0, 0, 0, 0]
        self.assertEqual(list(canonical_decode(a, count, s)), s)
        # the element count[0] is unused
        self.assertEqual(list(canonical_decode(a, [-47, 0, 4], s)), s)
        # in fact it can be anything, as it is entirely ignored
        self.assertEqual(list(canonical_decode(a, [None, 0, 4], s)), s)

        # the symbol argument can be any sequence object
        s = [65, 66, 67, 98]
        self.assertEqual(list(canonical_decode(a, cnt, s)), s)
        self.assertEqual(list(canonical_decode(a, cnt, bytearray(s))), s)
        self.assertEqual(list(canonical_decode(a, cnt, tuple(s))), s)
        self.assertEqual(list(canonical_decode(a, cnt, bytes(s))), s)
        # Implementation Note:
        #   The symbol can even be an iterable.  This was done because we
        #   want to use PySequence_Fast in order to convert sequence
        #   objects (like bytes and bytearray) to a list.  This is faster
        #   as all objects are now elements in an array of pointers (as
        #   opposed to having the object's __getitem__ method called on
        #   every iteration).
        self.assertEqual(list(canonical_decode(a, cnt, iter(s))), s)

    def test_canonical_decode_empty(self):
        a = bitarray()
        # count and symbol are empty, ok because sum([]) == len([])
        self.assertEqual(list(canonical_decode(a, [], [])), [])
        a.append(0)
        self.assertRaisesMessage(ValueError, "reached end of bitarray",
                                 list, canonical_decode(a, [], []))
        a = bitarray(31 * '0')
        self.assertRaisesMessage(ValueError, "ran out of codes",
                                 list, canonical_decode(a, [], []))

    def test_canonical_decode_one_symbol(self):
        symbols = ['A']
        count = [0, 1]
        a = bitarray('000')
        self.assertEqual(list(canonical_decode(a, count, symbols)),
                         3 * symbols)
        a.append(1)
        a.extend(bitarray(10 * '0'))
        iterator = canonical_decode(a, count, symbols)
        self.assertRaisesMessage(ValueError, "reached end of bitarray",
                                 list, iterator)

        a.extend(bitarray(20 * '0'))
        iterator = canonical_decode(a, count, symbols)
        self.assertRaisesMessage(ValueError, "ran out of codes",
                                 list, iterator)

    def test_canonical_decode_large(self):
        with open(__file__, 'rb') as f:
            msg = bytearray(f.read())
        self.assertTrue(len(msg) > 50000)
        codedict, count, symbol = canonical_huffman(Counter(msg))
        a = bitarray()
        a.encode(codedict, msg)
        self.assertEqual(bytearray(canonical_decode(a, count, symbol)), msg)
        self.check_code(codedict, count, symbol)

    def test_canonical_decode_symbol_change(self):
        msg = bytearray(b"Hello World!")
        codedict, count, symbol = canonical_huffman(Counter(msg))
        self.check_code(codedict, count, symbol)
        a = bitarray()
        a.encode(codedict, 10 * msg)

        it = canonical_decode(a, count, symbol)
        def decode_one_msg():
            return bytearray(next(it) for _ in range(len(msg)))

        self.assertEqual(decode_one_msg(), msg)
        symbol[symbol.index(ord("l"))] = ord("k")
        self.assertEqual(decode_one_msg(), bytearray(b"Hekko Workd!"))
        del symbol[:]
        self.assertRaises(IndexError, decode_one_msg)

    def ensure_sorted(self, chc, symbol):
        # ensure codes are sorted
        for i in range(len(symbol) - 1):
            a = chc[symbol[i]]
            b = chc[symbol[i + 1]]
            self.assertTrue(ba2int(a) < ba2int(b))

    def ensure_consecutive(self, chc, count, symbol):
        start = 0
        for nbits, cnt in enumerate(count):
            for i in range(start, start + cnt - 1):
                # ensure two consecutive codes (with same bit length) have
                # consecutive integer values
                a = chc[symbol[i]]
                b = chc[symbol[i + 1]]
                self.assertTrue(len(a) == len(b) == nbits)
                self.assertEqual(ba2int(a) + 1, ba2int(b))
            start += cnt

    def ensure_count(self, chc, count):
        # ensure count list corresponds to length counts from codedict
        maxbits = len(count) - 1
        self.assertEqual(maxbits, max(len(a) for a in chc.values()))
        my_count = (maxbits + 1) * [0]
        for a in chc.values():
            self.assertEqual(a.endian, 'big')
            my_count[len(a)] += 1
        self.assertEqual(my_count, count)

    def ensure_complete(self, count):
        # ensure code is complete and not oversubscribed
        len_c = len(count)
        x = sum(count[i] << (len_c - i) for i in range(1, len_c))
        self.assertEqual(x, 1 << len_c)

    def ensure_complete_2(self, chc):
        # ensure code is complete
        dt = decodetree(chc)
        self.assertTrue(dt.complete())

    def ensure_round_trip(self, chc, count, symbol):
        # create a short test message, encode and decode
        msg = [choice(symbol) for _ in range(10)]
        a = bitarray()
        a.encode(chc, msg)
        it = canonical_decode(a, count, symbol)
        # the iterator holds a reference to the bitarray and symbol list
        del a, count, symbol
        self.assertEqual(type(it).__name__, 'canonical_decodeiter')
        self.assertEqual(list(it), msg)

    def check_code(self, chc, count, symbol):
        self.assertTrue(len(chc) == len(symbol) == sum(count))
        self.assertEqual(count[0], 0)  # no codes have length 0
        self.assertTrue(set(chc) == set(symbol))
        # the code of the last symbol has all 1 bits
        self.assertTrue(chc[symbol[-1]].all())
        # the code of the first symbol starts with bit 0
        self.assertFalse(chc[symbol[0]][0])

        self.ensure_sorted(chc, symbol)
        self.ensure_consecutive(chc, count, symbol)
        self.ensure_count(chc, count)
        self.ensure_complete(count)
        self.ensure_complete_2(chc)
        self.ensure_round_trip(chc, count, symbol)

    def test_simple_counter(self):
        plain = bytearray(b'the quick brown fox jumps over the lazy dog.')
        cnt = Counter(plain)
        self.check_code(*canonical_huffman(cnt))

    def test_no_comp(self):
        freq = {None: 1, "A": 1}  # None and "A" are not comparable
        self.check_code(*canonical_huffman(freq))

    def test_balanced(self):
        n = 7
        freq = {}
        for i in range(1 << n):
            freq[i] = 1
        code, count, sym = canonical_huffman(freq)
        self.assertEqual(len(code), 1 << n)
        self.assertTrue(all(len(v) == n for v in code.values()))
        self.check_code(code, count, sym)

    def test_unbalanced(self):
        n = 32
        freq = {}
        for i in range(n):
            freq[i] = 1 << i
        code = canonical_huffman(freq)[0]
        self.assertEqual(len(code), n)
        for i in range(n):
            self.assertEqual(len(code[i]), n - max(1, i))
        self.check_code(*canonical_huffman(freq))

    def test_random_freq(self):
        for n in 2, 3, 4, randint(5, 200):
            freq = {i: random() for i in range(n)}
            self.check_code(*canonical_huffman(freq))

# ---------------------------------------------------------------------------

if __name__ == '__main__':
    unittest.main()
