import streamlit as st
from PyPDF2 import PdfReader
from langchain.text_splitter import RecursiveCharacterTextSplitter
import os
#from langchain_google_genai import GoogleGenerativeAIEmbeddings
#import google.generativeai as genai
#from langchain.vectorstores import FAISS
#from langchain_google_genai import ChatGoogleGenerativeAI
from langchain.chains.question_answering import load_qa_chain
from langchain.prompts import PromptTemplate
from dotenv import load_dotenv


from langchain_community.embeddings import OpenAIEmbeddings,HuggingFaceInstructEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_community.chat_models import ChatOpenAI
from langchain_community.llms import HuggingFaceHub
from langchain_community.embeddings import OllamaEmbeddings
from langchain_community.chat_models import ChatOllama
from langchain_core.documents import Document
import os

load_dotenv()
# os.getenv("GOOGLE_API_KEY")
#genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))

def get_pdf_text(pdf_docs):
    text=""
    for pdf in pdf_docs:
        pdf_reader= PdfReader(pdf)
        for page in pdf_reader.pages:
            text+= page.extract_text()
    return  text



def get_text_chunks(text):
    text_splitter = RecursiveCharacterTextSplitter(chunk_size=50000, chunk_overlap=1000)
    chunks = text_splitter.split_text(text)
    return chunks


def get_vector_store(text_chunks):
    #embeddings = GoogleGenerativeAIEmbeddings(model = "models/embedding-001")
    embeddings = OllamaEmbeddings(model="nomic-embed-text")
    vector_store = FAISS.from_texts(text_chunks, embedding=embeddings)
    vector_store.save_local("faiss_index")


def get_conversational_chain():

    prompt_template = """
    Answer the question as detailed as possible from the provided context, make sure to provide all the details, if the answer is not in
    provided context just say, "answer is not available in the context", don't provide the wrong answer\n\n
    Context:\n {context}?\n
    Question: \n{question}\n

    Answer:
    """

    #model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3)
    model = ChatOllama(
        base_url = 'http://127.0.0.1:11434',
        model = "llama3:8b"
        #model = "deepseek-r1:8b"
    )
    prompt = PromptTemplate(template = prompt_template, input_variables = ["context", "question"])
    chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)

    return chain



def user_input(user_question):
    #embeddings = GoogleGenerativeAIEmbeddings(model = "models/embedding-001")
    embeddings = OllamaEmbeddings(model="nomic-embed-text")

    new_db = FAISS.load_local("faiss_index", embeddings,allow_dangerous_deserialization= True)
    docs = new_db.similarity_search(user_question)

    chain = get_conversational_chain()

    
    response = chain(
        {"input_documents":docs, "question": user_question}
        , return_only_outputs=True)

    print(response)
    st.write("Reply: ", response["output_text"])




def main():
    st.set_page_config("Multi PDF Chatbot", page_icon = ":scroll:")
    st.header("Multi-PDF's 📚 - Chat Agent 🤖 ")

    user_question = st.text_input("Ask a Question from the PDF Files uploaded .. ✍️📝")

    if user_question:
        user_input(user_question)

    with st.sidebar:

        st.image("Robot.jpg")
        st.write("---")
        
        st.title("📁 PDF File's Section")
        pdf_docs = st.file_uploader("Upload your PDF Files & \n Click on the Submit & Process Button ", accept_multiple_files=True)
        if st.button("Submit & Process"):
            with st.spinner("Processing..."): # user friendly message.
                raw_text = get_pdf_text(pdf_docs) # get the pdf text
                text_chunks = get_text_chunks(raw_text) # get the text chunks
                get_vector_store(text_chunks) # create vector store
                st.success("Done")
        
        st.write("---")
        st.image("img.jpg")
        st.write("AI App created by @ Puru Sharma")  # add this line to display the image


    st.markdown(
        """
        <div style="position: fixed; bottom: 0; left: 0; width: 100%; background-color: #0E1117; padding: 15px; text-align: center;">
            © <a href="Puru Sharma" target="_blank">Puru Sharma</a> | Made with ❤️
        </div>
        """,
        unsafe_allow_html=True
    )

if __name__ == "__main__":
    main()
