
Introduction to Python

Python is an interpreted, high-level, general-purpose programming language. It was created by

Guido van Rossum and first released in 1991. Python's design philosophy emphasizes code

readability with the use of significant whitespace. Its syntax allows programmers to express

concepts in fewer lines of code than many other languages.

Setting up Python

Before you start coding in Python, you need to install it on your computer. You can download

the latest version of Python from the official website (https://www.python.org/downloads/) for

your operating system.

Python Interpreter

Once you have Python installed, you can run the Python interpreter. The interpreter is a program

that reads and executes Python code. You can start the interpreter by opening a terminal or

command prompt and typing `python` (or `python3` on some systems).


```python 

# This is a comment in Python 

print("Hello, World!") # This will print "Hello, World!" to the console 

``` 


Variables and Data Types

In Python, you don't need to declare variables or specify their data types explicitly. Python will

automatically infer the data type based on the value assigned to the variable.


```python 

x = 5       # Integer 

y = 3.14    # Float 

name = "Alice"  # String 

is_student = True # Boolean 

``` 


Operators

Python supports various types of operators, such as arithmetic operators (`+`, `-`, `*`, `/`, `%`),

assignment operators (`=`, `+=`, `-=`, `*=`, `/=`), comparison operators (`==`, `!=`, `>`, `<`, `>=`,

`<=`), and logical operators (`and`, `or`, `not`).


```python 

a = 10 

b = 3 

c = a + b   # c = 13 



d = a - b   # d = 7 

e = a * b   # e = 30 

f = a / b   # f = 3.3333333333333335 

g = a % b   # g = 1 

``` 


Control Flow

Python has several control flow statements that allow you to control the execution of your code

based on certain conditions or loops.

Conditional Statements

The `if` statement is used to execute a block of code if a certain condition is true.


```python 

age = 18 

if age >= 18: 

    print("You are an adult.") 

else: 

    print("You are a minor.") 

``` 


Loops

Python has two types of loops: `for` loops and `while` loops.

For Loops

The `for` loop is used to iterate over a sequence (such as a list, tuple, or string).


```python 

fruits = ["apple", "banana", "cherry"] 

for fruit in fruits: 

    print(fruit) 

``` 


While Loops

The `while` loop is used to execute a block of code as long as a certain condition is true.


```python 

count = 0 

while count < 5: 

    print(count) 

    count += 1 



``` 


Functions

Functions are reusable blocks of code that perform a specific task. You can define your own

functions in Python using the `def` keyword.


```python 

def greet(name): 

    print(f"Hello, {name}!") 

 

greet("Alice")  # Output: Hello, Alice! 

``` 


Lists

Lists are ordered collections of items. You can create a list by enclosing items in square brackets

`[]`, separated by commas.


```python 

numbers = [1, 2, 3, 4, 5] 

mixed_list = [1, "two", 3.14, True] 

 

# Accessing list items 

print(numbers[0])  # Output: 1 

print(mixed_list[1])  # Output: "two" 

 

# List methods 

numbers.append(6)  # Add an item to the end of the list 

mixed_list.remove("two")  # Remove the first occurrence of an item 

``` 


Dictionaries

Dictionaries are unordered collections of key-value pairs. You can create a dictionary by

enclosing key-value pairs in curly braces `{ }`, separated by commas.


```python 

person = {"name": "Alice", "age": 25, "city": "New York"} 

 

# Accessing dictionary values 

print(person["name"])  # Output: "Alice" 

 

# Adding or modifying dictionary values 

person["email"] = "alice@example.com" 

person["age"] = 26 



 

# Dictionary methods 

print(person.keys())  # Output: dict_keys(['name', 'age', 'city', 'email']) 

print(person.values())  # Output: dict_values(['Alice', 26, 'New York', 'alice@example.com']) 

``` 


Modules and Packages

Python comes with a standard library of modules that you can import and use in your programs.

You can also create your own modules and packages to organize and reuse your code.


```python 

import math 

 

x = math.sqrt(16)  # Using the sqrt function from the math module 

print(x)  # Output: 4.0 

``` 


File Handling

Python allows you to read from and write to files on your computer. The `open()` function is

used to open a file, and various methods are available for reading or writing to the file.


```python 

# Writing to a file 

file = open("output.txt", "w") 

file.write("Hello, World!") 

file.close() 

 

# Reading from a file 

file = open("output.txt", "r") 

content = file.read() 

print(content)  # Output: Hello, World! 

file.close() 

``` 


Object-Oriented Programming (OOP)

Python supports object-oriented programming, which is a programming paradigm that focuses on

creating objects and defining their properties and behaviors.


```python 

class Person: 

    def __init__(self, name, age): 

        self.name = name 

        self.age = age 



 

    def greet(self): 

        print(f"Hello, my name is {self.name} and I'm {self.age} years old.") 

 

person1 = Person("Alice", 25) 

person1.greet()  # Output: Hello, my name is Alice and I'm 25 years old. 

``` 


This covers the basics of Python programming. Of course, there's much more to learn, including

advanced topics like exception handling, decorators, generators, and more. But this should give

you a solid foundation to start writing Python programs and exploring further.

